A pause sequence enriched at translation start sites drives transcription dynamics in vivo.

نویسندگان

  • Matthew H Larson
  • Rachel A Mooney
  • Jason M Peters
  • Tricia Windgassen
  • Dhananjaya Nayak
  • Carol A Gross
  • Steven M Block
  • William J Greenleaf
  • Robert Landick
  • Jonathan S Weissman
چکیده

Transcription by RNA polymerase (RNAP) is interrupted by pauses that play diverse regulatory roles. Although individual pauses have been studied in vitro, the determinants of pauses in vivo and their distribution throughout the bacterial genome remain unknown. Using nascent transcript sequencing, we identified a 16-nucleotide consensus pause sequence in Escherichia coli that accounts for known regulatory pause sites as well as ~20,000 new in vivo pause sites. In vitro single-molecule and ensemble analyses demonstrate that these pauses result from RNAP-nucleic acid interactions that inhibit next-nucleotide addition. The consensus sequence also leads to pausing by RNAPs from diverse lineages and is enriched at translation start sites in both E. coli and Bacillus subtilis. Our results thus reveal a conserved mechanism unifying known and newly identified pause events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation

On the basis of nascent transcript sequencing, it has been postulated but never demonstrated that transcriptional pausing at translation start sites is important for gene regulation. Here we show that the Escherichia coli thiamin pyrophosphate (TPP) thiC riboswitch contains a regulatory pause site in the translation initiation region that acts as a checkpoint for thiC expression. By biochemical...

متن کامل

Alternative translation start sites are conserved in eukaryotic genomes

Alternative start AUG codons within a single transcript can contribute to diversity of the proteome; however, their functional significance remains controversial. Here, we provide comparative genomics evidence that alternative start codons are under negative selection in vertebrates, insects and yeast. In genes where the annotated start codon (sAUG) resides within the suboptimal nucleotide cont...

متن کامل

Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences

Position weight matrices (PWMs) are the standard model for DNA and RNA regulatory motifs. In PWMs nucleotide probabilities are independent of nucleotides at other positions. Models that account for dependencies need many parameters and are prone to overfitting. We have developed a Bayesian approach for motif discovery using Markov models in which conditional probabilities of order k - 1 act as ...

متن کامل

Pervasive isoform‐specific translational regulation via alternative transcription start sites in mammals

Transcription initiated at alternative sites can produce mRNA isoforms with different 5'UTRs, which are potentially subjected to differential translational regulation. However, the prevalence of such isoform-specific translational control across mammalian genomes is currently unknown. By combining polysome profiling with high-throughput mRNA 5' end sequencing, we directly measured the translati...

متن کامل

Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription

Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 344 6187  شماره 

صفحات  -

تاریخ انتشار 2014